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Overview
Computer vision is a discipline of artificial intelligence (AI) that trains 
computers to interpret and understand the visual world. By training 
deep learning models using digital images, machines can accurately 
identify and classify objects – and then react to what they see. The 
use case applications of this technique are vast, from facial recogni-
tion to healthcare. Using computer vision, data scientists have the 
opportunity to provide businesses with powerful data insights. The 
rise of open-source technologies, such as Python, make it extremely 
efficient for data science professionals to validate and train deep 
learning models. In the following white paper, Mosaic will examine 
how to apply these dynamic machine vision algorithms to identify and 
classify airport layouts using satellite imagery. 
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Digitizing and 
Automating the Airport 
Layout Process
Airport layouts provide pilots an advance 
visual of the runways, taxiways, and other 
elements of an airport, providing useful 
context for flying visual approaches or 
taxiing to assigned gates or holding areas. 
Airport blueprints are usually available 
at the time the airport was planned and 
constructed; however, airports typically 
undergo many changes over decades of use, 
requiring tedious, time-consuming blueprint 
updates to get pilots an accurate airport 
layout to reference.  Digitization of airport 
layout blueprints and automatic updating 
through computer vision could save thou-
sands of hours of labor each year if imple-
mented worldwide. 

Mosaic ATM, a leading AI aviation consult-
ing firm, outlines an approach applying 
computer vision for updating the airport 
layouts using satellite imagery of the 
airports. This automates the digitization 
process and can be used on any airport 
worldwide. Mosaic provides innovative avia-
tion solutions to commercial airlines and 
federal agencies, including NASA and the 
FAA. Fusing our sister companies’ (Mosaic 
Data Science) deep learning expertise with 
Mosaic ATM’s deep domain expertise led 
to a promising computer vision solution to a 
real-world aviation challenge. 

The ground truth data used for the 
computer vision solution was created by 
extracting polygons from satellite images 
that represent various structures at the 
airport, i.e., Runways, Blastpad, Apron, 
Taxiway, Buildings. Figure 1 shows the 
airport layout for Hartsfield-Jackson Atlanta 
International Airport (ALT) with these 5 
classes of ground truth. These enclosing 
polygons were drawn using Google Earth 
and extracted to kml files. The kml files hold 
the latitude, longitude, and altitude points 
of the polygon for each referenced class 
above. This polygon extraction process is 
time-consuming, limiting how many ground 
truth blueprints can be created. A dataset 
of 46 major airports in the US and Canada 
was made available for training a computer 
vision model. 

Figure 1: ATL Airport Layout with 5 
Ground Truth Classes

Key: Runway

Apron Blast PadTaxiway

Buildings
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The masks in Figure 2 were in 
RGB and had some outlines 
from the image extraction. The 
masks were first converted to 
a greyscale image; then, we set 
thresholds to create a binary 
mask with 1s and 0s indicating 
the presence of information at 
a specific pixel location. The 
masks were processed further 
to fill in the outlines of the poly-
gon. The filled, closed polygons 
shown in Figure 3 improved 
the results of the model signifi-
cantly because identifying the 
region enclosed in a polygon 
is a lot easier than identifying 
it based only on the outlying 
edges. We used the OpenCV 
Python library for all mask 
preprocessing tasks.

Image preprocessing is 
the first step to solving a 
computer vision problem. 

For the purpose of this solution, the kml files were used in Google Earth to extract images of the 
ground truth, as there was no georeferencing of the satellite image of the airport available. The 
individual masks for each airport in our dataset was extracted, as shown in Figure 2, at a 700×700 
image resolution.  A more ideal way would be to use the polygon coordinates and georeferenced 
image and convert them to an image coordinate system which will help in deploying the results 
from the computer vision model back into the satellite imagery coordinates.

Figure 2: Step 1 | Computer Vision Design | Data Transformation

Image

Mask 3: Apron

Mask 1: Runway

Mask 4: Taxiway

Mask 2: Blastpad

Mask 5: Buildings
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The data was split to train and test at a 90:10 ratio, with 41 images selected 
randomly to be used for training and 5 selected for testing. Because the data-
set was so small, we needed to augment the images and masks to create a 
bigger dataset. For the augmentation, the albumentation library was used to 
create transformations such as crop and rescale, channel shuffles, inversion, 
gaussian noise, brightness, contrast and hue changes, transpose, rotations 
and horizontal and vertical flips, and some combinations of the above. In 
this process, an image is selected at random and a random transformation 
is applied to the image-mask pair, as shown in Figure 4. This process was 
repeated until 500 images were generated with corresponding masks. 

Other preprocessing techniques used include resizing the images to the 
required resolution by the model and normalizing the image pixel intensities 
to fall within a range of 0 to 1, which helps in the model convergence.

Figure 3: Transformation from Satellite Image to Closed, Filled Polygon Masks

Figure 4: Step 2 | Algorithm Selection and Training | CNN
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The satellite images have many intricate 
details to segregate each of the elements 
of interest. For example, a runway is a 
concrete strip, which looks similar to the 
roads surrounding the airport; however, the 
differentiating factor is the markings on the 
runway. Also, there is a huge variation in the 
images, e.g., in terms of width of runways, 
distance from which images were captured, 
and presence of ocean or green lands 
surrounding the airport. Feature engineering 
these details might be relatively easy for 
elements like runways, which have well-de-
fined structures, but this is not the case for 
other elements that are of interest, like the 
apron or buildings. Hence, a neural network 
approach was considered. We conducted A 
DSTL’s Kaggle competition to identify and 
segment roads, buildings, crops, oceans, 
and other features using satellite images, 
and got great outcomes using UNet models, 
which trained on a dataset as low as 25 
image samples with labels. 

Figure 5: Step 3 | Deep Learning 
Interpretation & Tuning

UNet is a convolutional neural network archi-
tecture that is widely used for biomedical image 
segmentation and requires very few training 
samples. Our problem was very similar to the 
biomedical applications, except the classes to be 
identified were different. Our dataset, however, is 
very balanced—we had all the elements present in 
equal proportions in the entire dataset.

Our training data, consisting of 41 samples 
augmented to 500 samples, was split to train and 
validate at an 80:20 ratio, with 400 images used 
for training and 100 for validation. The model was 
trained for the first class of runways as a proof of 
concept.

A vanilla UNet was first tested on the dataset. 
The architecture, as shown in Figure 5, comprises 
an encoder network and a decoder network with 
skip connections connecting the down sampling 
and upsampling layer, which help in restoring the 
features for better reconstruction. It consists of 
blocks of convolutional layers with an activation 
function and a pooling layer between the blocks, 
adding up to 17 layers.

Source: Ronneberger, Olaf; Fischer, Philipp; Brox, Thomas (2015). “U-Net: Convolutional Networks 
for Biomedical Image Segmentation.” https://www.kaggle.com/mauddib/data-science-bowl-tuto-
rial-using-cnn-tensorflow
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The UNet was trained using a Binary cross entropy loss func-
tion and a Nadam optimizer and dice (intersection over union - 
IOU) as a metric for accuracy using a batch size of 4 for images 
at 512×512 resolution. The dice coefficient is a pixel level 
matching of the prediction to the ground truth. As the name 
suggests, IOU is the intersection of the pixels of prediction and 
ground truth over the union. A number close to 0 suggests that 
there is little to no intersection of prediction over the ground 
truth, and a value close to 1 is an indication of a good prediction 
with low false positives and false negatives. This model had a 
high train accuracy of 0.782 dice, but the validation accuracy 
was as low as 0.45. It clearly indicated the model was overfit to 
the training samples and needed some regularization. 

We created a modified UNet with additional dropout layers 
after each block of the convolutional layer and additional batch 
normalization layers in each block, which helped overcome the 
overfitting problem in the previous model. This final model had 
27 layers and used the same optimizer and accuracy metric. 
The loss function was changed to (1- dice), which helped 
reduce the loss at a pixel level and improved segmentation. 
This model had an accuracy of 0.87 for the training samples 
and 0.79 for the validation samples. Figure 6 shows the model 
accuracy over 40 epochs trained on the final model. 

Figure 6: Final UNet Model Accuracy and Loss

Model accuracy 
validated at 84%
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The predictions from the final UNet model were tested on 5 images from the 
validation samples, which had the ground truth and the average dice over the 
5 images was 0.840235. Figure 7 depicts the prediction mask for one of these 
images compared to the ground truth mask. For the runways specifically, the 
shape of the object is a rectangle. This helps in refining the mask by using some 
erosion and thresholds and finding the tightest bounding rectangle for the 
detected contour. All the post-processing was done using OpenCV. 

Figure 7: Model-Predicted 
Runway Masks vs. Ground Truth

This model was further 
tested on a random set 
of airports downloaded 
from Google Maps. 
Results were promising, 
especially for the runway 
class; sample results 
are shown in Figure 8. 
The red line represents 
the model classification 
of the corresponding 
runway. Figure 8: Final Model Results for Runway 

Class Using Random Airport Images
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These results serve as Mosaic’s proof of 
concept, demonstrating that the computer 
vision model can accurately provide airport 
layout features. This model can be further 
extended to predict other airport features 
beyond runways, such as taxiways. Mosaic 
conducted some preliminary runs using the 
trained weights from the runway for initializing 
a transfer learning model, and they performed 
with an accuracy between 0.6 and 0.7. These 
models can easily be improved with some 
hyperparameter tuning to match or even beat 
the accuracy of the final UNet model. The 
overarching objective is to build a model that is 
as accurate as possible and requires the least 
post-processing.

An approach to meet the larger objective is 
to use a multiclass segmentation model and 
penalize the loss by a factor when a false 
negative or false positive of one class is a true 
positive of another class. This approach would 
help improve the segmentation accuracy for all 
classes simultaneously. If there is still a need 
for post-processing, other techniques such as 
Hough transform, nearest neighbor clustering 
for sparsely distributed points like DBSCAN, 
and OPTICS algorithms can refine the predic-
tions further before applying any thresholds.

The analog airport diagrams available for all 
major US airports could also be leveraged to 
add some intelligence to the model predic-
tions. For example, the runway markings have a 
number indicating the direction of the runway, 
so if the model predicts a taxiway instead of a 
runway, it can be corrected using this informa-
tion. There are other airport elements that were 
not included in this study, e.g., runway mark-
ings, taxiway guidance lines, taxiway holding 
positions, taxiway intersection markings,  

deicing area, helipads, and 
construction zones, which Mosaic 
intends to include in extensions 
of this automation to build more 
comprehensive airport layouts. 

The insights generated from 
computer vision algorithms could 
also be integrated with the Mosaic 
ATM airport viewer, which tracks 
the exact position of aircraft at an 
airport and estimates the time to 
takeoff or taxi to runway to help 
improve management of airport 
ground traffic.  

With this proof of concept, 
Mosaic was able to take the first 
step toward automation of digi-
tal airport diagrams for airports, 
which could be useful to airports, 
pilots, and air traffic managers 
worldwide. 
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