
White Paper1

Detecting Airport Layouts
with Computer Vision

White Paper

White Paper

Overview
Computer vision is a discipline of artificial intelligence (AI) that trains
computers to interpret and understand the visual world. By training
deep learning models using digital images, machines can accurately
identify and classify objects – and then react to what they see. The
use case applications of this technique are vast, from facial recogni-
tion to healthcare. Using computer vision, data scientists have the
opportunity to provide businesses with powerful data insights. The
rise of open-source technologies, such as Python, make it extremely
efficient for data science professionals to validate and train deep
learning models. In the following white paper, Mosaic will examine
how to apply these dynamic machine vision algorithms to identify and
classify airport layouts using satellite imagery.

Detecting Airport Layouts
with Computer Vision

2

White Paper

Digitizing and
Automating the Airport
Layout Process
Airport layouts provide pilots an advance
visual of the runways, taxiways, and other
elements of an airport, providing useful
context for flying visual approaches or
taxiing to assigned gates or holding areas.
Airport blueprints are usually available
at the time the airport was planned and
constructed; however, airports typically
undergo many changes over decades of use,
requiring tedious, time-consuming blueprint
updates to get pilots an accurate airport
layout to reference. Digitization of airport
layout blueprints and automatic updating
through computer vision could save thou-
sands of hours of labor each year if imple-
mented worldwide.

Mosaic ATM, a leading AI aviation consult-
ing firm, outlines an approach applying
computer vision for updating the airport
layouts using satellite imagery of the
airports. This automates the digitization
process and can be used on any airport
worldwide. Mosaic provides innovative avia-
tion solutions to commercial airlines and
federal agencies, including NASA and the
FAA. Fusing our sister companies’ (Mosaic
Data Science) deep learning expertise with
Mosaic ATM’s deep domain expertise led
to a promising computer vision solution to a
real-world aviation challenge.

The ground truth data used for the
computer vision solution was created by
extracting polygons from satellite images
that represent various structures at the
airport, i.e., Runways, Blastpad, Apron,
Taxiway, Buildings. Figure 1 shows the
airport layout for Hartsfield-Jackson Atlanta
International Airport (ALT) with these 5
classes of ground truth. These enclosing
polygons were drawn using Google Earth
and extracted to kml files. The kml files hold
the latitude, longitude, and altitude points
of the polygon for each referenced class
above. This polygon extraction process is
time-consuming, limiting how many ground
truth blueprints can be created. A dataset
of 46 major airports in the US and Canada
was made available for training a computer
vision model.

Figure 1: ATL Airport Layout with 5
Ground Truth Classes

Key: Runway

Apron Blast PadTaxiway

Buildings

3

White Paper

The masks in Figure 2 were in
RGB and had some outlines
from the image extraction. The
masks were first converted to
a greyscale image; then, we set
thresholds to create a binary
mask with 1s and 0s indicating
the presence of information at
a specific pixel location. The
masks were processed further
to fill in the outlines of the poly-
gon. The filled, closed polygons
shown in Figure 3 improved
the results of the model signifi-
cantly because identifying the
region enclosed in a polygon
is a lot easier than identifying
it based only on the outlying
edges. We used the OpenCV
Python library for all mask
preprocessing tasks.

Image preprocessing is
the first step to solving a
computer vision problem.

For the purpose of this solution, the kml files were used in Google Earth to extract images of the
ground truth, as there was no georeferencing of the satellite image of the airport available. The
individual masks for each airport in our dataset was extracted, as shown in Figure 2, at a 700×700
image resolution. A more ideal way would be to use the polygon coordinates and georeferenced
image and convert them to an image coordinate system which will help in deploying the results
from the computer vision model back into the satellite imagery coordinates.

Figure 2: Step 1 | Computer Vision Design | Data Transformation

Image

Mask 3: Apron

Mask 1: Runway

Mask 4: Taxiway

Mask 2: Blastpad

Mask 5: Buildings

4

White Paper

The data was split to train and test at a 90:10 ratio, with 41 images selected
randomly to be used for training and 5 selected for testing. Because the data-
set was so small, we needed to augment the images and masks to create a
bigger dataset. For the augmentation, the albumentation library was used to
create transformations such as crop and rescale, channel shuffles, inversion,
gaussian noise, brightness, contrast and hue changes, transpose, rotations
and horizontal and vertical flips, and some combinations of the above. In
this process, an image is selected at random and a random transformation
is applied to the image-mask pair, as shown in Figure 4. This process was
repeated until 500 images were generated with corresponding masks.

Other preprocessing techniques used include resizing the images to the
required resolution by the model and normalizing the image pixel intensities
to fall within a range of 0 to 1, which helps in the model convergence.

Figure 3: Transformation from Satellite Image to Closed, Filled Polygon Masks

Figure 4: Step 2 | Algorithm Selection and Training | CNN

5

White Paper

The satellite images have many intricate
details to segregate each of the elements
of interest. For example, a runway is a
concrete strip, which looks similar to the
roads surrounding the airport; however, the
differentiating factor is the markings on the
runway. Also, there is a huge variation in the
images, e.g., in terms of width of runways,
distance from which images were captured,
and presence of ocean or green lands
surrounding the airport. Feature engineering
these details might be relatively easy for
elements like runways, which have well-de-
fined structures, but this is not the case for
other elements that are of interest, like the
apron or buildings. Hence, a neural network
approach was considered. We conducted A
DSTL’s Kaggle competition to identify and
segment roads, buildings, crops, oceans,
and other features using satellite images,
and got great outcomes using UNet models,
which trained on a dataset as low as 25
image samples with labels.

Figure 5: Step 3 | Deep Learning
Interpretation & Tuning

UNet is a convolutional neural network archi-
tecture that is widely used for biomedical image
segmentation and requires very few training
samples. Our problem was very similar to the
biomedical applications, except the classes to be
identified were different. Our dataset, however, is
very balanced—we had all the elements present in
equal proportions in the entire dataset.

Our training data, consisting of 41 samples
augmented to 500 samples, was split to train and
validate at an 80:20 ratio, with 400 images used
for training and 100 for validation. The model was
trained for the first class of runways as a proof of
concept.

A vanilla UNet was first tested on the dataset.
The architecture, as shown in Figure 5, comprises
an encoder network and a decoder network with
skip connections connecting the down sampling
and upsampling layer, which help in restoring the
features for better reconstruction. It consists of
blocks of convolutional layers with an activation
function and a pooling layer between the blocks,
adding up to 17 layers.

Source: Ronneberger, Olaf; Fischer, Philipp; Brox, Thomas (2015). “U-Net: Convolutional Networks
for Biomedical Image Segmentation.” https://www.kaggle.com/mauddib/data-science-bowl-tuto-
rial-using-cnn-tensorflow

6

White Paper

The UNet was trained using a Binary cross entropy loss func-
tion and a Nadam optimizer and dice (intersection over union -
IOU) as a metric for accuracy using a batch size of 4 for images
at 512×512 resolution. The dice coefficient is a pixel level
matching of the prediction to the ground truth. As the name
suggests, IOU is the intersection of the pixels of prediction and
ground truth over the union. A number close to 0 suggests that
there is little to no intersection of prediction over the ground
truth, and a value close to 1 is an indication of a good prediction
with low false positives and false negatives. This model had a
high train accuracy of 0.782 dice, but the validation accuracy
was as low as 0.45. It clearly indicated the model was overfit to
the training samples and needed some regularization.

We created a modified UNet with additional dropout layers
after each block of the convolutional layer and additional batch
normalization layers in each block, which helped overcome the
overfitting problem in the previous model. This final model had
27 layers and used the same optimizer and accuracy metric.
The loss function was changed to (1- dice), which helped
reduce the loss at a pixel level and improved segmentation.
This model had an accuracy of 0.87 for the training samples
and 0.79 for the validation samples. Figure 6 shows the model
accuracy over 40 epochs trained on the final model.

Figure 6: Final UNet Model Accuracy and Loss

Model accuracy
validated at 84%

7

White Paper

The predictions from the final UNet model were tested on 5 images from the
validation samples, which had the ground truth and the average dice over the
5 images was 0.840235. Figure 7 depicts the prediction mask for one of these
images compared to the ground truth mask. For the runways specifically, the
shape of the object is a rectangle. This helps in refining the mask by using some
erosion and thresholds and finding the tightest bounding rectangle for the
detected contour. All the post-processing was done using OpenCV.

Figure 7: Model-Predicted
Runway Masks vs. Ground Truth

This model was further
tested on a random set
of airports downloaded
from Google Maps.
Results were promising,
especially for the runway
class; sample results
are shown in Figure 8.
The red line represents
the model classification
of the corresponding
runway. Figure 8: Final Model Results for Runway

Class Using Random Airport Images

8White Paper

White Paper

These results serve as Mosaic’s proof of
concept, demonstrating that the computer
vision model can accurately provide airport
layout features. This model can be further
extended to predict other airport features
beyond runways, such as taxiways. Mosaic
conducted some preliminary runs using the
trained weights from the runway for initializing
a transfer learning model, and they performed
with an accuracy between 0.6 and 0.7. These
models can easily be improved with some
hyperparameter tuning to match or even beat
the accuracy of the final UNet model. The
overarching objective is to build a model that is
as accurate as possible and requires the least
post-processing.

An approach to meet the larger objective is
to use a multiclass segmentation model and
penalize the loss by a factor when a false
negative or false positive of one class is a true
positive of another class. This approach would
help improve the segmentation accuracy for all
classes simultaneously. If there is still a need
for post-processing, other techniques such as
Hough transform, nearest neighbor clustering
for sparsely distributed points like DBSCAN,
and OPTICS algorithms can refine the predic-
tions further before applying any thresholds.

The analog airport diagrams available for all
major US airports could also be leveraged to
add some intelligence to the model predic-
tions. For example, the runway markings have a
number indicating the direction of the runway,
so if the model predicts a taxiway instead of a
runway, it can be corrected using this informa-
tion. There are other airport elements that were
not included in this study, e.g., runway mark-
ings, taxiway guidance lines, taxiway holding
positions, taxiway intersection markings,

deicing area, helipads, and
construction zones, which Mosaic
intends to include in extensions
of this automation to build more
comprehensive airport layouts.

The insights generated from
computer vision algorithms could
also be integrated with the Mosaic
ATM airport viewer, which tracks
the exact position of aircraft at an
airport and estimates the time to
takeoff or taxi to runway to help
improve management of airport
ground traffic.

With this proof of concept,
Mosaic was able to take the first
step toward automation of digi-
tal airport diagrams for airports,
which could be useful to airports,
pilots, and air traffic managers
worldwide.

9

mailto:info@mosaicatm.com

