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Introduction
This white paper explores how traditional models 
of the value of information (VoI) can be extended 
effectively to account for uncertainties presently 
inherent in gathering and analyzing big data. To 
illustrate the challenge, we explore the VoI an 
automobile manufacturer may derive by engineer-
ing a telematics system into its vehicles.
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Background
Let’s start by reviewing a few key basic concepts.

Big data. We define big data as data that an organization cannot store, process, or 
analyze economically using traditional storage technologies such as relational databases 
or text files. This definition has three implications that matter to us here.

1. One organization’s big data may be another organization’s small data.1
2. Data is usually big because it has a low value per unit of storage (bit, byte, etc.), 
compared to the data that organizations have stored in relational databases for decades.
3. The point of gathering big data is the same as gathering small data: to capture trans-
actions represented by the data (online transaction processing, or OLTP); or to analyze 
the data in a way that lets the organization improve its operations (business intelli-
gence, or BI). Sometimes these two purposes merge in operational BI. Big data is not an 
economic end in itself.

Decision analysis. Next, decision analysis is the practice of formally modeling a deci-
sion to determine rigorously the best course of action available to an individual or group 
decision maker. The practice dates back at least to the mid-twentieth century axiomat-
ics of researchers such as Stanford Professors Kenneth Arrow and Ron Howard.2 And 
while decision analysis relies on basic concepts of probability and utility that are much 
older, it continues to be an active area of research. For example, in recent decades cogni-
tive scientists have catalogued cognitive biases, frequently observed departures from 
decision science’s prescriptions about rational decisions.3 Some decision scientists have 
created ways to account for a decision maker’s attitude towards risk.4 Others continuing 
in Professor Arrow’s tradition explore how best to model and improve necessarily imper-
fect group decision processes.5

1. Roger Magoulas and Ben Lorica. “Introduction to Big Data.” Release 2.0 (O’Reilly, 2009). 
2. Kenneth Arrow, Social Choice and Individual Values (Yale University Press, 1951). Ronald A. Howard, 
“Decision Analysis: Applied Decision Theory.” Proceedings of the 4th International Conference on Operational 
Research (1966), pp. 55-77.
3. This tradition began in the 1970s with the work of Amos Tversky and Daniel Kahneman. See e.g. 
Daniel Kahneman, Paul Slovic, and Amos Tversky, Judgment Under Uncertainty: Heuristics and Biases 
(Cambridge University Press, 1982).
4. A decision maker can be risk averse or risk prone, paying to avoid risk or paying to experience it.
5. Professor Arrow is most famous for his impossibility theorem, which very roughly speaking says that 
no formal group decision process other than dictatorship or consensus can be fully rational.
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Decision analysis usually represents decisions graphically as decision trees 
or influence diagrams. In this paper’s examples we’ll stick with the former, 
because they’re likely more familiar. (The two are formally equivalent6).

The value of information. Finally, VoI is the difference between the expected 
value of  a given decision in the absence of some piece of information, and 
the expected value of the same decision in the presence of that information 
(presumably having paid some price to receive the information). So a decision 
problem involving VoI models two decisions: whether to acquire the informa-
tion, and the nominal decision the information may  inform.

Here is a trivial example. Suppose you consider purchasing a used car priced 
at $20,000. If the car is in excellent shape (and it seems to be), the Kelley 
Blue Book Web site tells you the car is worth $21,000. If it’s in good condition, 
requiring only minor repairs, it’s worth $20,000. If it’s in poor condition and 
requires a major repair, it’s worth $16,000. A reliable used-car valuation Web 
site tells you that 50% of vehicles with the same make, model, and model year 
are in excellent condition, 30% in good condition, and 20% in poor condition.

Here’s the decision tree representing this decision:

6. R.M. Oliver and J.Q. Smith, eds. Influence Diagrams, Belief Networks, and Decision Analysis (Wiley, 1990).

Figure 1: Uninformed Purchasing Decision
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The expected value of this uninformed decision to buy is

0.5 * ($21,000 - $20,000) + 0.3 * ($20,000 - 20,000) + 0.2 * ($16,000 - 20,000) 
= 0.5 * $1,000 + 0.3 * $0 + 0.2 * -$4,000 
= $500 + $0 + -$800 
= -$300

Your expected value is now

-$200 + 
0.5 * ($21,000 - $20,000) + 0.3 * ($20,000 - 20,000) + 0.2 * ($0) 
= -$200 + 0.5 * $1,000 + 0.3 * $0 + 0.2 * $0 
= -$200 + $500 + $0 + $0 
= $300

As the terms in bold suggest, you trade away a certain $200 to avoid a 20% 
chance of losing $4,000 (a -$800 expected value). That tradeoff is favor-
able enough to make your overall expected value $300, which is now better 
than doing nothing. So in this case the information is worth buying. (In fact, 
a little reflection tells you that it would be worth paying the mechanic up to 
$500 to inspect the car before you decide whether to buy it.)

Figure 2: Informed Purchasing Decision

Now your decision looks like this:
So buying the car without 
knowing what condition it’s 
really in would “in expectation” 
leave you worse off by $300. 
Compared to doing nothing (at 
an expected value of $0), that 
would be a bad choice.

Before making an offer on the 
car, you could insist on taking 
the car to a mechanic for an 
independent inspection. The 
inspection costs $200. The 
inspection would reveal the 
car’s condition with certainty. 
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Big Data’s VoI Uncertainties
BI specialists have long known that data ware-
house (DW) end users do not reliably predict how 
they will eventually use the DW’s historical data. 
Initially they often overlook use cases entirely, and 
for years later may persist in significantly misjudg-
ing the value of even well-known use cases having 
well-understood business cases.7

The same uncertainties become even more acute 
when working with big data. Because end users 
generally lack experience with the data, the orga-
nization may fail entirely to recognize a valuable 
use case. Or, the organization may be uncertain 
about whether and to what degree a known use 
case is valuable. Furthermore, unlike BI projects, 
which have fairly predictable development costs 
(if they’re well managed), big data projects intro-
duce two new uncertainties: whether the selected 
big data storage and analysis technologies will 
work at all, and if so how much it will cost to use 
them. In sum, big data is fraught with uncertainty 
as to implementation feasibility and cost, use 
cases, and use-case value. Merely deciding which 
of these uncertainties to reduce, by what means, 
and by how much, can be intimidating. This is 
where decision modeling incorporating VoI analy-
sis really shines.

7. These truisms give rise to several rules of “defensive” 
DW architecture. For example, data architects are told to 
store data at the finest level of granularity available, even if 
known reporting and analysis requirements do not compel it. 
DW project management is likewise very oriented towards 
iterative process, anticipating the inevitable rapidly evolving 
business requirements.

The Example of Motor 
Vehicle Telematics
What are telematics? Let’s now explore 
VoI opportunities in the context of an auto-
mobile manufacturer considering adding 
telematics to its new vehicles. Telematics 
in this context combine telecommunica-
tions and informatics capabilities to make 
an automobile part of the “Internet of 
things.” The vehicle sends operational data 
to the manufacturer, and may also receive 
operational instructions, software updates, 
etc. from the manufacturer. Ultimately the 
manufacturer must decide whether, when, 
and how to implement telematics. To inform 
that decision, the manufacturer may wish 
to gather additional information about the 
costs and benefits of telematics.

Telematics mean big data. Automotive 
telematics quickly become a big data chal-
lenge as the frequency with which a vehicle 
transmits data increases. To illustrate: one 
telematics system currently in production 
for fleets offers real-time delivery of diag-
nostic fault codes, fuel consumption, idle 
vs. work time, engine hours, odometer, 
temperatures, and pressures.8  So it would 
not be unrealistic to suppose an automotive 

8. http://www.aemp.org/category/sponsred-article. 
Retrieved January 28, 2014.
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telematics system transmits 10 four-byte numbers in a 
message that overall requires 100 bytes, once per time 
period. Suppose further that the manufacturer sells 10 
million vehicles worldwide each year, and wants to track 
five years of telematics history (e.g. to cover the entire 
warranty period). At steady state the manufacturer 
would have 50 million vehicles reporting 100 bytes, 
or 5GB total, per time period. Table 1 below presents 
different periods and the steady-state data storage they 
require under these assumptions.

Period Transmissions Over Five Years Total Steady-State Storage

month 60 300GB

week 261 1.3TB

day 1,826 9.1TB

hour 43,830 219TB

minute 2,629,800 13PB

second 157,788,000 789PB
Table 1: Storage Requirements for Various Data-Transmission Periods

The petascale numbers in the bottom three rows are big data 
for any organization.9  So a well-informed telematics decision 
will involve all four uncertainties we cite above.
9. By way of comparison: as of May 2013, eBay had about 90PB of data supporting analytics. About 8PB 
was in a relational data warehouse. The rest was in Hadoop or Singularity, both noSQL storage/analysis 
platforms. True real-time vehicle telematics could thus produce an order of magnitude more data than 
eBay analyzes.    See  http://www.itnews.com.au/News/342615,inside-ebay8217s-90pb-data-warehouse.
aspx, retrieved January 28, 2014.
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Potential Telematics 
Use Cases
Automotive telematics have several 
potentially profitable use cases. Each 
of them deserves enough study to 
determine how real and valuable 
the use case is, assuming the data 
are stored in a way that supports 
the relevant analyses. Here are brief 
discussions of eight possible use cases 
Mosaic has identified, including possi-
ble VoI analyses that might help the 
manufacturer gain an accurate under-
standing of the use case’s value.

Design and engineering improve-
ments. Telematics can provide the 
engineering function with a statisti-
cally precise, detailed characterization 
of the real-world loads experienced by 
key vehicle components. Those loads 
may vary geospatially or seasonally, as 
well as by vehicle type or option pack-
age. The manufacturer might review 
opportunities to improve component 
performance, reliability, or manufac-
turing cost, assuming it has this sort 
of detailed, localized knowledge of 
component loads.

Suppose, for example, that the 
telematics metrics include transmis-
sion temperature. This metric could 
result in the manufacturer discovering 
that certain vehicle models in specific 
geographies routinely run their trans-
missions at or above a high-wear 
temperature threshold, explaining 

a high rate of transmission warranty 
service for these vehicles. This discov-
ery could lead to improvements in 
the transmission cooling systems for 
these vehicles in specific geographies 
(perhaps making a supplementary 
transmission cooler a required feature 
in these areas), to reduce expensive 
warranty repairs at a modest cost and 
in a highly targeted fashion.

This example illustrates a natural 
approach to investigating the value 
of specific telematics metrics. Rather 
than starting with the metric, data 
scientists would start with the manu-
facturer’s historical warranty claims, 
to identify expensive classes of claims 
that might be dramatically reduced 
in a cost-effective way, if engineering 
had a more precise understanding of 
the loads experienced by the relevant 
components, and the markets in which 
those loads occur.10  Warranty claims 
can represent several percentage points 
of product sales, and can be more than 
twice as high in bad years as they are 
in good years. For example, Figure 3 
depicts the claims and accruals rates 
for one major automobile manufacturer, 
for the past decade:11

10. The manufacturer would no doubt have 
performed a Pareto analysis of its warranty 
claims, and so would already know which 
few classes of claims account for the bulk of 
warranty expenses. The VoI analysis would 
then take the Pareto analysis as its point of 
departure.
11. http://www.warrantyweek.com/archive/
ww20120628.html, retrieved January 28, 2014
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Targeted marketing. Automobile dealerships 
routinely send their customers direct-mail offer-
ings related to vehicle service. The effectiveness 
of these campaigns has been limited historically, 
because the dealership has no way to time an indi-
vidual mailing so it reaches a vehicle owner exactly 
when the vehicle needs the services offered in the 
mailing. Telematics can change that, potentially 
increasing dramatically the effectiveness of vehi-
cle-service marketing campaigns. Besides produc-
ing additional service revenue, such campaigns 
can increase vehicle owners’ compliance with 
recommended maintenance schedules, which will 
reduce the frequency of component failures that 
give rise to warranty claims. Telematics might 
also let the manufacturer increase revenues from 
warranty-extension offers, by letting the manu-
facturer tailor the offers to a vehicle’s operating 
history. (Poorly maintained vehicles would require 
more costly extended warranties, or would not be 
offered warranty extensions at all).

Figure 3: Annual Claims and Accruals Rates for an Auto Manufacturer

Clearly the opportunity for 
claims reductions through 
improved reliability engi-
neering appears substantial. 
Possibly better operating 
metrics would let the manu-
facturer work  far more 
proactively to eliminate 
quality problems early in the 
vehicle lifecycle, to reduce 
spikes in annual warranty 
claims and accruals.
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The increased profitability of targeted 
marketing can be modeled from 
known cost and revenue figures 
related to historical marketing 
campaigns. The main unknown 
in these models is the amount of 
uplift produced by the telemat-
ics data.  These unknowns can be 
estimated from general knowledge 
of what constitutes good uplift in 
targeted marketing. For example, 
a 1% response rate is typical for a 
direct-mail marketing campaign 
based solely on household income 
and distance to the advertiser.  More 
targeted campaigns can easily double 
the response rate.

Warranty-claim review. Vehicle 
owners sometimes fail to maintain 
their vehicles properly. When failures 
to maintain result in product fail-
ures during the warranty period, the 
owner, not the manufacturer, should 
be responsible for the consequences 
of the failure to maintain. Telematics 
can provide a basis in fact for denying 
warranty claims under these condi-
tions, especially when the owner has 
received timely telematics-based 
marketing communications encourag-
ing the owner to maintain the vehicle 
properly. A VoI study of warran-
ty-claim validity and vehicle-mainte-
nance patterns would help determine 
the magnitude of this opportunity.

Product-liability reduction. Product-lia-
bility claims fall into three classes.

• Manufacturing defects are devia-
tions from design that result in bodily 
injury or death.
• Design defects are aspects of a 
product’s design that are inherently 
hazardous.
• Failures to warn occur when the 
manufacturer knows of a hazardous 
defect but does not timely warn the 
consumer.

Telematics can help a manufacturer 
become aware of potential defects 
early enough to re-engineer, recall, 
and replace the relevant components, 
thereby reducing customer exposure to 
the defects. At the same time telemat-
ics can help warn consumers about the 
defect early enough to avoid failure-to-
warn claims.

Some product-liability claims arise from 
vehicle misuse, either failure to maintain 
or improper operation. Telematics might 
help the manufacturer discover these 
facts and resist a product-liability claim 
on the basis of product use at variance 
with manufacturer design and recom-
mendations.

A VoI study of historical product-liability 
cases could help quantify the proportion 
of liability cases that telematics could 
help the manufacturer avoid by each 
means: reducing defect impact, warning 
consumers timely about known hazards, 
and resisting claims based on improper 
product use or maintenance.
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Supply-chain management. Telematics can improve supply-chain 
management in several ways. First, wear metrics could reveal dispro-
portionate early wear in certain components. This might let the 
manufacturer anticipate and prepare for heightened demand for those 
components. If the premature wear were limited to a specific supplier 
or factory, the manufacturer could work with the supplier or factory to 
solve its quality problem far earlier than the problem might otherwise 
come to light through demand patterns for replacement parts. A VoI 
analysis could translate known frequencies of premature component 
wear (perhaps by component source) into an expected value of using 
telematics to detect such problems while they develop.

Finally, as we remark above, telematics could improve the service 
organization’s ability to level demand and anticipate demand surges. 
A VoI study could translate known demand patterns into opportuni-
ties to improve the service organization’s resource utilization through 
demand leveling.

Leasing program cost reduction. We have already remarked how 
telematics might improve warranty-claim expenses. That argument 
applies equally to leased vehicles. Moreover, the value of a leased 
vehicle at the end of the lease depends on the vehicle’s condition. 
Telematics can help the manufacturer encourage its leasing custom-
ers to bring their leased vehicles to a dealership on time for routine 
maintenance, or apply appropriate surcharges when customers fail 
properly to maintain a leased vehicle. A VoI study of present main-
tenance-schedule compliance rates among leasing customers would 
suggest the size of this opportunity.

Competitive advantage or parity (consumer perception). Telematics 
create several feature/function opportunities that attract consumers. 
These are well known, and we do not review them here. Marketing 
researchers can project how much demand uplift a set of product 
features create, or how much loss of market share results from a 
failure to maintain feature/function parity with competitive products. 
These benefits do not relate to the information gathered by telematics 
per se, but they are nevertheless benefits that should be part of the 
analysis of the decision whether and when to implement telematics.
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Big Data Technology Uncertainties
Having reviewed the use cases that assume the existence and adequacy of a telematics data 
infrastructure, we must also investigate the uncertainties surrounding the infrastructure itself. 
Again, these uncertainties revolve around feasibility and cost. This is because, while the vehi-
cle-side sensor and communications technologies are commodities, the manufacturer-side big 
data storage and analysis systems required by petascale telematics data require cutting-edge 
technologies. These technology-based uncertainties represent much of the total uncertainty of 
a telematics program.

Feasibility. A feasibility study must identify at least provisional solutions to many technical 
problems. Without meaning to be exhaustive, we suggest some of them here, and outline 
opportunities to improve technology certainty through VoI analysis.

Transmission frequency by use case: Each use case may require telematics 
transmission of specific metrics at specific frequencies. For example, supporting 
targeted marketing of maintenance services might only require daily transmission 
of total mileage. In contrast, supporting design and engineering improvements 
might require transmission of several metrics each minute. An accurate prediction 
of overall data volumetrics must account for these differences, and for volumetrics 
uncertainties for each use case. A VoI analysis could help specify plausible metrics 
and reporting frequencies for each metric, for each use case.

Overall volumetrics: Merging the use-case volumetrics into a single overall volu-
metrics estimate requires determining when it is reasonable to assume that one 
use case’s volumetric uncertainties are independent of another’s. If there are 
correlations in the use cases’ volumetrics, the overall estimate must account for 
them in combining the individual use cases’ estimates. Otherwise the overall esti-
mate may underestimate its worst case. VoI analysis can help identify these risks.

Analytical requirements by use case: Each use case will have different query and 
analysis requirements for its metrics. Some will amount to simple queries, such as 
identifying vehicles reaching a specific mileage since the last transmission period. 
Others will just involve computing summary statistics such as average mileage per 
time period. Others still will require far more complex analytics,  such as running 
a classifier to detect probable cases of warranty claim fraud. Furthermore, query 
and analysis performance must be efficient enough to keep pace with the flow 
of data—a nontrivial requirement in big data contexts. Adequate certainty about 
these requirements is imperative to ascertain feasibility.
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Overall analytical requirements: The combination of analytical processing 
requirements imposed by the use cases may be too much to ask of a single storage 
technology. This can result in exploring several courses of action, such as

• abandoning a marginally profitable use case to avoid its requirements,
• adding an in-memory data store to support specific requirements, or
• partitioning the telematics data into separately stored subsets such that no 
single processing requirement reads data from multiple partitions.

VoI analysis might be valuable in determining whether real incompatibilities 
among individual analytical requirements exist.

High-level data architecture:  The question of how to organize the data in its stor-
age servers requires understanding how the server technology manages data and 
queries; but also how the server technology, analytical requirements, and expected 
access patterns interact.  The feasibility study should address this question enough 
to identify at least one plausible data architecture for each proposed storage tech-
nology.

Storage technologies:  Choosing a storage technology that fails to

• scale to required data volumes or throughput rates,
• support an important class of data-processing requirements,
• satisfy the application’s uptime and recovery requirements, or
• support the application’s CAP etc. tradeoffs12

can be a very expensive error, when it is not discovered until after the organiza-
tion has invested substantial resources in the storage technology.13 The feasibility 
study should document all of these requirements and identify at least one storage 

12. That is, consistency, availability, and partition tolerance. See  http://www.cs.cornell.edu/
courses/cs6464/2009sp/papers/brewer.pdf for a description and proof of Eric Brewer’s “CAP 
theorem.” See also http://cs-www.cs.yale.edu/homes/dna/papers/abadi-pacelc.pdf on the tradeoff 
between consistency and latency. The very large database (VLDB) literature documents many 
such tradeoffs. 
13. We have seen this specific mistake cost one organization millions of dollars in rework and lost 
revenue opportunities. The organization chose a big data technology that was poorly suited to 
its processing tasks. By the time the organization recognized the mistake, the storage technology 
was in production, supporting several million users. The organization ultimately layered two other 
noSQL technologies over the original, to help support the system’s loads—resulting in a far more 
complex architecture than the application would have required, had the organization chosen a 
better suited storage technology in the first place.

13

http://www.cs.cornell.edu/courses/cs6464/2009sp/papers/brewer.pdf
http://www.cs.cornell.edu/courses/cs6464/2009sp/papers/brewer.pdf
http://cs-www.cs.yale.edu/homes/dna/papers/abadi-pacelc.pdf


White Paper

technology, or one set of storage technologies (if more than one appears neces-
sary), that satisfies all of them.  If satisfying all of the requirements appears uncer-
tain, VoI analysis can help determine which requirements are at greatest risk.

Analytical technologies:  In most cases choosing a storage technology supports 
several analytical tools. For example, Hadoop supports the Mahout library of 
machine learning and data mining algorithms, the R language, Java, and several 
SQL-like languages. The feasibility study should compare available analytical tech-
nologies on each candidate storage platform with the overall analytical require-
ments, to ensure the storage system will support all required analytics.

Some of the use cases may have uncertain analytical requirements.  If so, VoI anal-
ysis can help reduce these uncertainties by determining (at least) which classes of 
analytical techniques each use case requires, and the likelihood that at least one 
supported analytical tool will provide a satisfactory technique in the required class.

Hardware platforms: Big data storage systems are generally designed to run 
on commodity hardware, so that they “scale out” cheaply.  The feasibility study 
should ensure that the storage and analysis tools’ hardware requirements, and the 
telematics system’s overall reliability requirements, are consistent with at least 
one hardware option’s processing power, I/O and network bandwidth, storage 
capacity, failover technology, etc.

Cost. Assuming the feasibility study has identified a provisional technology stack, 
the remaining area of uncertainty is implementation cost. Outlining the activities 
and concerns involved in a big data implementation project deserves a separate 
white paper.14 Experienced petascale practitioners such as Shutterfly (over 30PB 
of big data15) report that continual hardware failures, uptime guarantees, and 
recovery processes become fundamental concerns. The cost of implementation 
depends strongly on the types and frequencies of hardware failures, as well as the 
number of hardware devices and software server instances that the solution must 
instantiate and administer. VoI can be an invaluable approach to identifying which 
cost projections are most uncertain, and to determining which of these uncertain-
ties can be effectively reduced.

14. Or indeed a whole book. See e.g. Tiffani Crawford, Big Data Analytics Project Management 
(2013).
15. http://www.cio.com/article/704354/How_to_Implement_Next_Generation_Storage_Infra-
structure_for_Big_Data, retrieved January 28, 2014.
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Putting it all Together
The decision-analysis process is less linear than this white paper suggests.  In 
particular, there are significant interactions between different sources of uncer-
tainty. Technology limitations can lead to decisions to scrap a use case that viewed 
independently appears attractive.  The decision to implement one use case requir-
ing frequent transmission of a set of metrics may dramatically reduce the cost of 
another, otherwise marginal use case, by satisfying its metrics requirements at 
little or no incremental cost.

Most important, several marginally attractive use cases can combine to make a 
much more attractive overall business case for vehicle telematics, in part because 
(as long as their outcomes are generally independent) aggregating many use cases 
pools their risks, making it unlikely that a properly executed telematics implemen-
tation will prove unprofitable. On average each use case will be marginally profit-
able. And over time, additional use cases for telematics data already in storage will 
accrue, improving the return on the telematics big data investment. This is perhaps 
the most surprising consequence of the fact that big data is, by definition, data 
that one cannot store and analyze profitably in traditional databases.  In contrast 
with data in traditional databases, which mostly have very small sets of use cases, 
a key virtue of telematics data is the abundance of modestly attractive use cases 
these data enjoy.
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